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A modified model of the mixing length is constructed. The model adequately 
accounts for changes in external flow conditions and the history of the flow. 

Semiempirical models of turbulence are now fairly widely used in methods of calculating 
turbulent boundary layers. The most common of these models are shown in Table i. The 
models are sufficiently simple in structure and convenient for practical use, but they do 
not always yield satisfactory results in calculating the characteristics of a turbulent 
boundary layer -- particularly when there are substantial longitudinal pressure gradients. 

For a comparative analysis of these turbulence models, we used the experimental data 
obtained by Schubauer and Spangenbery (experiment 4400) and Bradshaw (experiment 2600) for 
flows characterized by high pressure gradients with a parameter P* equal to 5-30 and 30-35, 
respectively (the numerical identification of the experiments corresponds to the materials 
of the Stanford conference [i]). 

Figure 1 compares experimental mixing-length values with values calculated from the 
formulas in Table i. The calculated results diverge considerably from each other and from 
the empirical data, particularly for flow 2600. Thus, substantial errors result from 
solving turbulent-boundary-layer equations with these models (Figs. 2 and 3), the size of 
the error depending on the accuracy with which the given model describes the distribution 
of mixing length over the layer thickness. It should be noted that the experiments of 
Schubauer and Spangenberg correspond more to the Sebesi and Smith model, while Bradshaw's 
experiments correspond more to the models of Daisler and McDonald. However, none of these 
models make it possible to obtain reliable calculated data for both flows (4400 and 2600). 

The above analysis shows that the investigated models do not fully reflect the effect 
of either local external conditions of the flow or its history on the mixing length. It 
was noted in several studies [2, 6, 7] that turbulence models cannot be based on the 

TABLE i. Models of Mixing Length and Turbulent Viscosity 

Serial Model Author 
No. 

/=0,085 [ 1 - - ( 1 - - 1 )  5] 

v t~O,41gal [@ (1- -1) ]0 '  5 exp (-- 0 ,~6 ") 

l=O,1 6 1 "exp (~ 8 g16) 
1 -- exp (=-- 6 g/6) 

Inner region 

x 

, K = 0,41 

Outer region 

v t = 0,0168 u16"•  

i 

Spaulding [2] 

:hablevskii [2] 

)aisler [3] 

VIcDona Ido Fish 
[4] 

~ebesi, Smith [5] 
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Fig. i. Mixing length calculated from local 
values of boundary-layer parameters: a) 
4400 (x=0.51 m); b) 2600 (x=1.19 m); 1-5) 
models presented in Table i; 6) actual dis- 
tribution. 

assumption of a constant value of parameter K =0.4 (or K =0.41, as with some authors -- see 
models 2, 4, and 5 in Table i). According to the data from numerous experiments, the value 
of K -- equal to the slope tangent of the linear section of the graph of mixing-length dis- 
tribution over the thickness of a boundary layer (Fig. i) -- is significantly affected by 
a longitudinal pressure gradient: the value of K decreases to 0.35 with a negative pressure 
gradient and in some cases increases to 0.75 with a positive gradient. The maximum value 
of the mixing length is also a variable quantity. According to the empirical data, it lies 
within the range from 0.0686 to 0.1156 and was given a value of 0.086 or 0.1156 in the inves- 
tigated models (0.086 in the Spaulding model and 0.16 in the Daisler and McDonald models). 
Thus, the turbulence models presented in the tables are of a special nature, since a limited 
volume of experimental material which does not embrace different types of gradient flows was 
used in their construction. 

The present work attempts to further improve a mathematical model of mixing length on 
the basis of analysis of experimental data on a broader class of flows. For analysis and 
generalizations, we used the experimental data presented in the materials of the Stanford 
conference considered to be authoritative [i], as well certain data published later [8, 9] 
and the results of our own experiments. 

The following relation was adopted as a basis for construction of our modified model 

where the damping factor 

(1) 

[ I002.+)}~ 
D =  t h  . K " ' ( 2 )  

parameter K = tg a (Fig. i), L =/max/6 is the maximum value approached by function (I) at 
y/6 § for this quantity, we took the relative mixing length at the point of the first 
maximum on the experimental curves of 1/6 (comparative calculations showed that such a choice 
for parameter L gives the best results). 

The main difference between the modified turbulence model and the previous models is 
that the parameters K and L, rather than being assumed constant, are functions of the local 
conditions and history of the flow. The functional relationships for these parameters were 
determined on the basis of generalization of experimental data from 125 experiments, includ- 
ing 14 different flows described in the materials of the Stanford conference and ii flows 
used in [8] and [9] and by us. Also, some of the flows used in the generalization were 
different in the sign and magnitude of their pressure gradients. The methods of mathemati- 
cal statistics were used to analyze the sample from the 125 experiments. 

The analysis was based on experimental data on mixing length distribution over the 
thickness of a turbulent boundary layer. In those cases where the Reynolds frictional stres- 
ses were not measured directly, it was necessary to determine them using the methods in [2, 
i0]. The total frictional stresses were found by integrating the boundary-layer equations 
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Fig. 2. Form parameter H in the experiments: a) 4400; 
b) 2600; 1-5) models presented in Table i; 6) modified 
model; 7) experiment, x, m. 
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In order to reduce the integration error, the measured velocity distributions over the boun- 
dary-layer thickness were approximated by Thompson profiles [ii]. This guaranteed reliable 
calculation of the derivative ~u/~x from two velocity profiles found in the test section and 
an adjacent section. The derivative ~u/~y was calculated by direct differentiation of the 
analytical Thompson relations. 

The distribution of values of the mixing length over the thickness of the boundary 
layer I/~ = f(y/6) was plotted for all 125 experiments and the resulting curves were used 
to find empirical values of K and L. The thus-obtained groups of values of these parameters 
were then used to establish the generalizing relations. 

Starting from the fact that the value of K depends considerably on the pressure gradient 
and that the change in the gradient is in turn accompanied by a change in the integral charac- 
teristics of the boundary layer ~*, 0 and the form parameter H, we first chose the parame- 
ters P*, Re*, and H as arguments for the multiple regression for K. A preliminary check of 
the closeness of the correlation between K and the parameters P*, Re*, and H showed that the 
correlation coefficients were equal to 0.815, 0.765, and 0.747, respectively. This shows 
that the response function is sufficiently dependent on the chosen arguments. Together with 
this, in constructing the correlation field of the K function, it was found that the empiri- 
cal values deviated appreciably from the average curve for several equilibrium flows with a 
positive pressure gradient (flows 2200, 2300, 2500, and 2600, from Clauser's and Bradshaw's 
experiments, in accordance with the Stanford conferencenumeration). According toClauser [12], 
equilibrium flows are characterized by a constant value of B or H, i.e., d$/dx =0 or dH/dx = 
O. Thus, in addition to the arguments chosen already, we introduced a characteristic of 

flow equilibrium in the form of the dimensionless parameter 0 aH . As a result, the regres- 
dx 

( od"  sion equation was sought in the form K=~ H, P*, Re*, -~x ] 

The form of the correlation was determined by the method of stepwise regression, with 
a check of the remainder variance. The following relation was obtained as a result: 
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Fig. 3. 
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Friction coefficient in the experiments: 
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a) 4400 ; 
b) 2600; 1-5) models in Table i; 6) modified model; 7) 
experiment. 
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The rms error of the approximation is 4.6%, the multiple correlation coefficient is equal 
to 0.97, and its significance according to Student's criterion is 173. This is considerably 
higher than the critical value for the given sample volume. 

The value of L also depends on the pressure gradient. The following expression was 
obtained for it by the method of stepwise regression 

H--I +0,0158exp --3200 dHdx +0,0269K +0.385"10-~/Re .2. (5) 

Equation (5) approximates the experimental data with arms error of 7.7%. The multiple cor- 
relation coefficient is equal to 0.83 and its significance according to Student's criterion 
is 28, which exceeds the critical value for the given sample -- two. 

The accuracy of the turbulence model (i), (2), (4), (5) was checked against an exten- 
sive amount of empirical data. The proposed model was used to solve differential equations 
of a turbulent boundary layer, determine velocity profiles over its thickness in different 
sections along the flow, and determine integral characteristics of the layer. A comparison 
was made with the experimental data. The following solution algorithm was used. 

By means of the Levi--Liess transform, the motion and continuity equations were reduced 
to a single differential equation in the current function [5]. The equation was linearized after 
substitution of finite differences for the derivatives with respect to the longitudinal coor- 
dinate. The third derivative of the dimensionless current function was approximated using a 
five-point model, once having determined the width of the matrix band. The resulting system 
of linear algebraic equations was solved by the economical (from the point of view of com- 
puter operating time) method of rotation [13], which made it possible to calculate the boun- 
dary-layer flow on an M-222 computer on grids consisting of up to 170 points over the layer 
thickness. The accuracy of the calculations with the program was evaluated by solving the 
equations of a lam%nar boundary layer for flows along a plate and about a cylinder, which 
have analytical solutions [14]. The maximum error of the friction coefficients on the wall 
din not exceed fractions of a percent and the velocity distribution over the thickness of 
the boundary layer was in nearly complete agreement. 

The numerous calculations of turbulent boundary layers completed with the modified model 
of turbulence showed that good agreement was obtained in all cases with the experimental 
data with respect to both the velocity distribution over the layer thickness and the integ- 
ral characteristics. As an example, Figs. 2 and 3 show calculated values of H and Cf 
(curves 6) for the two flows 2600 and 4400 against which the other models investigated were 
compared earlier. 

The results obtained allow us to recommend the modified model of turbulence to cal- 
culate turbulent boundary layers for different gradient flows. 

NOTATION 

8*, displacement thickness; O, momentum thickness; H = 6*/0, form parameter; Cf, fric- 
tion coefficient; ul, velocity on the outer boundary of the boundary layer; 8, thickness of 
boundary layer corresponding to the distance from the surface in the flow at which the local 
velocity u=O.995ul; x, abscissa, reckoned along the surface in the flow; y, ordinate, nor- 
mal to the surface; l, local value of mixing length, changing over the thickness of the boun- 
dary layer; y+ = yu+/~, dimensionless ordinate; u + =#TW/p, dynamic velocity; TW, wall shear 
stress; p, density; ~, coefficient of kinematic viscosity; P, pressure; T, local value of 
total shear stress at an arbitrary point over the boundary-layer thickness; Re* = u1~*/~, 
Reynolds number over the displacement thickness; P* =--6*dul/uldx, dimensionless parameter 
accounting for the pressure grpdient~ B = ~*dP/Twdx, dimensionless equilibrium parameter. 
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TURBULENT FLOW IN A BOUNDARY LAYER ON THE INLET 

AND OUTLET SIDES OF A ROTATING CHANNEL 

I. H. Korshin UDC 532.526.4:621.515 

Expressions are obtained for approximately determining the shear stresses on the 
outlet and inlet sides of a rotating channel on the basis of a turbulence energy 
balance equation, A. N. Kolmogorov's hypothesis, and the Monin--Obukhov similitude 
theory. 

In the flow of a fluid in the rotating channels of turbine rotors, body forces are 
created by the rotation and curvature of the channel walls. As an example, Fig. 1 shows 
body forces acting on a particle of fluid on the pressure side of a blade (the outlet side 
of the channel) in a plane impeller in a radial-flow compressor. The x axis is directed 
along the blade surface, the y axis is normal to the surface, and the z axis is parallel to 
the angular velocity vector. It can be seen that in most cases the total body force is 
negative on the pressure side and positive on the suction side of the blade (the inlet side 
of the channel). 

The different directions of the total body forces on the pressure and suction sides 
determines the different character of flow in the turbulent boundary layer. 

We can use Rayleigh's method to evaluate the stability of the flow and take the 
Richardson number as the criterion of stability [i, 2]. The total body force acting in the 
direction of the y axis is equal to (Fig. I) 

F=T-p 2~ui R-- ~2rcos~ , (1) 
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